Noise - Robust Speaker Recognition Using Subband Likelihoods and Reliable - Feature Selection
نویسنده
چکیده
Sungtak Kim et al. 89 We consider the feature recombination technique in a multiband approach to speaker identification and verification. To overcome the ineffectiveness of conventional feature recombination in broadband noisy environments, we propose a new subband feature recombination which uses subband likelihoods and a subband reliable-feature selection technique with an adaptive noise model. In the decision step of speaker recognition, a few very low unreliable feature likelihood scores can cause a speaker recognition system to make an incorrect decision. To overcome this problem, reliable-feature selection adjusts the likelihood scores of an unreliable feature by comparison with those of an adaptive noise model, which is estimated by the maximum a posteriori adaptation technique using noise features directly obtained from noisy test speech. To evaluate the effectiveness of the proposed methods in noisy environments, we use the TIMIT database and the NTIMIT database, which is the corresponding telephone version of TIMIT database. The proposed subband feature recombination with subband reliable-feature selection achieves better performance than the conventional feature recombination system with reliablefeature selection.
منابع مشابه
Information Fusion for Subband-HMM Speaker Recognit ion
Previous work has demonstrated the performance gains that can be obtained in speaker recognition by applying subband processing, together with hidden Markov modelling and multiple classifier recombination. Two recombination rules have been investigated: the sum of log likelihoods, which corresponds to the optimal Bayes’ rule under certain constraints, and multilayer perceptrons (MLP), which are...
متن کاملروشی جدید در بازشناسی مقاوم گفتار مبتنی بر دادگان مفقود با استفاده از شبکه عصبی دوسویه
Performance of speech recognition systems is greatly reduced when speech corrupted by noise. One common method for robust speech recognition systems is missing feature methods. In this way, the components in time - frequency representation of signal (Spectrogram) that present low signal to noise ratio (SNR), are tagged as missing and deleted then replaced by remained components and statistical ...
متن کاملSpeaker verification in noisy conditions using correlated subband features
This paper investigates the task of speaker verification in noisy conditions, assuming no prior knowledge about the noise. To achieve this we use subband features which can isolate bandlimited corruption and allow verification to be performed on mainly clean subbands. To further improve speaker verification performance, we propose a novel method to model correlation between subband feature stre...
متن کاملInvariant-integration method for robust feature extraction in speaker-independent speech recognition
The vocal tract length (VTL) is one of the variabilities that speaker-independent automatic speech recognition (ASR) systems encounter. Standard methods to compensate for the effects of different VTLs within the processing stages of the ASR systems often have a high computational effort. By using an appropriate warping scheme for the frequency centers of the timefrequency analysis, a change in ...
متن کاملSpeaker normalized spectral subband parameters for noise robust speech recognition
This paper proposes speaker normalized spectral subband centroids (SSCs) as supplementary features in noise environment speech recognition. SSCs are computed as frequency centroids for each subband from the power spectrum of the speech signal. Since the conventional SSCs depend on formant frequencies of a speaker, we introduce a speaker normalization technique into SSC computation to reduce the...
متن کامل